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INTRODUCTION

In this report, a long free-free slender beam is used as a model for a
flexible missile or rocket. The beam behaves as a Bernoulli-Euler column, and
in this case is assumed to be rotating about its longitudinal axis and subject
to an end thrust (Figure 1). Of prime interest is the effect of the rotation on
the lateral stability of the beam. The motion is assumed to be planar.

Different phases of the problem have been investigated in the past. A sum-
mary of the previous work is given in Reference 1. Silverberg (ref 2) was the
first to include thrust on the flying column. The differential equation for a
free-flying beam was given earlier as shown in Reference 3. Beal (ref 4) and
Feodos'ev (ref 5) obtained results with pulsating thrust. In 1972, Matsumotoc
and Mote (ref 6) treated a similar problem with directional thrust. In this
case, however, feedback control was included and a time delay was applied to the
control. The next contribution to understanding the problem was given by Peters
and Wu (ref 1). They concentrated on mode shape solutions at zero frequency for
different thrusts. A comprehensive description is also given in Reference 1 for
the eigenvalues and mode shape near zero thrust and with a thrust direction
close to that of a follower force. Recently, Park and Mote (ref 7) included 3
concentrated mass and feedback control. The feedback control i1ncluded was
allowed to be from different points along the beam.

As stated above, this report assesses the effect of rotation on the stabs’-
1ty of a free-free beam. The following section 1s a description of the problem.
Then the variational statement used for the solution 1s described. Next we sShow
how the variational statement is used with finite elements to solve the problem,

and lastly, we discuss the results of our investigation.

References are listed at the end of this report.




PROBLEM STATEMENT

The geometry of the problem is shown n Figure 1. The beam has a constant
cross-section of area A, density p, Young's modulus E, and moment of 1inertia I.
It shows a free-flying column subject to axial! thrust with directional control
and rotating about its axis. The differential equation for the beam 15 given by

EIuiV + p(g u')' + pAu + pAQ2u = 0 (1)

The first three terms represent the column as treated in Reference 1. The last
term on the left-hand side shows the effect of the rotation. The boundary con-

ditions are given by

2
W0) =0, wi(h) =0 . ou= ot
u''{0) = 0 . EIu"'{f) - KgPu'iR} = 0 (23
In dimensionless form with
U= u/t , X = x/1? r o= t/1
T 9£§3 - g%f L woeal (3)
and writing
U(x,T) = u(x)erl 4
the drfferential equation then becomes
a4 Q(iﬁ')' ¢ AU+ wiy = 0 Ch)
with the boundary conditions
u"(0) = 0
urt(o) = 0
u'(1l) =0
V(1) - KgQ[u'{1)] = O (61
Rewri1ting Eq. (5) as (and dropping hats)
u"t o Qixu') ' ¢ (AP+w?iu = 0 (7

It appears that the addition of rotation simply shifts the frequency of vibra-




tion of the system. The boundary conditions, Eq. (6), become

u"(0) =0
u"'(0) = 0
u'{l1l) =0
u"' (1) - KgQu'(1) = O (8)

The spacial variables are made dimensionless by dividing through by the beam's
length § and time is made dimensionless by dividing through by a constant 7 =
{pA23/EIN¥% which has the units of time.
The parameter A is a complex number in general
A= AR+ iAg

where both Ap and Ap are real numbers.

VARIATIONAL STATEMENT

To find the form of the variational statement, the differential equat-on -°s
multiplied by an arbitrary variation of the adjoint field variyable, 6vix), and
integrated over the beam length. Integration-by-parts indicates the form of the
variational statement and the natural boundary conditions. The variational

statement 1S given Dy

where
1 '
J = fo (umv? = Qxu'v' + (AZ+w?)uv]dx + Q(1+Kyiu' (1)v(1) (10}

Performing the variation of J with respect to u and v, one can arrive at the
original boundary value problem as well as the adjoint. Eguation (10) 1s the

basis for a finite element solution to the described jrobiem.




FINITE ELEMENT AND NUMERICAL FORMULATION
The procedure begins by taking the varijation of Eq. (10) and allowing the
variations in the problem variable, 6u(x), to be zero, 1.e., varying adjoint

variable v(x) only for now,

1
fO [u"sv" ~ Qxu'dv' + Azudv]dx - Q(1+Kg)u'(1)6v(l) = 0 (11)

where A2 = A2 + w?2. To discretize, the beam is divided into L elements, letting

i-1
£ = L{x - ---} i=1,2,3...,L 2
L
be the running coordinate in each element. Substituting Eq. (12) into Eqg. (11!
L
< 1 L ian - ) . - A? .
/ fo (Lo (s ()" - gfe + (i-1)fuli) ey (i)« —o u(sv(i)1ds
L
1=1
- Q(1+kg) u(L) T (1ysv(Li(1y = 0 (13

In order that *the displacements and their derivatives within an element pe

expressed in terms of their nodal values, the coordinate vectors are introduced.

Je T

i
[y
—
—
(e
~
[any
w
—
(e
>
)

vit)h o= {vl(w) vy (1) ARE YARRE e

U1(1), Uz(i) represent the displacement and slope at the left end of the 1tk
element, and U3(7) and Uyl?) represent deflectior and slope at the right end. A
similar interpretation 1s applied to the ad;oint coordinate vector vii)., The
transform is indicated by T.

Hermitian polynomials are used to relate the displacements within an ele-
ment to 1ts nodal values, hence, the following shape function 1s assumed:

al(g) = {1 - 367 + 28", & - 280 + &>, 3E7 - 260 -E% o+ &7 (15

so that




utidg) = aT(eHuld)

viidg) = aTgv(i) (16)
Substituting Eg. (16) into Eq. (13)
L
LIS S AT - 4Tz - _
} U1) T {LeC - Q[D+(i-1)B] + -- Afév(i) - q[1+Kkyjull) EsvIL) = ¢ (17
i=1
with
- - - 1 - -
A=[ aalde , B=/ a'a'Tde , C = fo a"a"Ta¢
_ 1 - _
0 = Io ga'a'Tde , E = a'(L)aT(L) (18)
Rewriting Eq. (17),
L
S 000 T{Aze (i)« s fsili) = g (19)
1=1
where
i) = a/L i=1,2, L
s(i) = L3¢ - Q[D + (i-1)B] =120
S(L) = L3C ~ Q[D + (L-1)B] ~ Q(1+Kg)E (20)
using certain continuity conditicns between the element nodal values
(1) (1-1) (1) (i-1)
Ul = Uj V1 = V3
(i) (i-1) (1) (1-1)
Uy = Uy Vo = Vg (21)
One can write
- 1) 1) (1) (1Y  (2)  (2) (Ly (L)
ul = {ug U U3 Ug Us Ug ... Uz Ug |
-1 {1) (1) (1) (1) (2) (2) (LY (U
vl = vy 2 Vg V3 4 .- Vi3 Vg | {22)




Firally, [P] and [S] are NxN matrices with N = 2L+2. Since év is arbitrary, tne

eigenvalue problem reduces to

A%
[o%)

UT{A2[P] + [S]} = O

which is solved for the eigenvalues.

CONCLUSIONS AND DISCUSSION
In this report, we have included rotation about the longitudinal axis in

the dynamic stability study of a free-flying missile subjected to axial thrusts.
It is assumed that the motions of bending and the thrust are in the same plane.
In the differential equation, the only difference resulting from the introduc-
tion of rotation is a change in the frequency parameter A? to

A? = A2 + @? (24)
where w 1s the rotation. Consequently, all the stability curves obtained pre-
viously (ref 1} can be used with some simple modifications. It should be noted
that “n Reference 1, we have written (with w = 0)

A= A = Ap + A1 (25)
and the stability character of the problem is indicated by: (1) stable vibra-
tions = At # 0, Ag = 0; (2) unstable by buckling (divergence) = Ag # 0, A1 = 0;
{3) unstable by flutter = Ag 2 0, A7 # 0; and (4) marginally stable = X7 = Ap =
0.

For the present case, the stability behavior s indicated as above, but

with A7 and Ag replacing A1 and Ag in the previous stability curves

A= AR+ AT (26)
and
A = (AR+1AT)7 = X7 + w® = [AR+iA7)2 + w’ (27
6




or
A = (Ag+iA7)? = A? - w? o= (ARHIAT)Y - w? (28)
From Eq. (28), when AR = 0, AZ = -A1? - w?, hence A = 0 and A1?¢ = Aptew?®,
Thus, originally stable vibrations will remain stable with higher vibtration fre-
guency. On the other hand, when Ay = 0, A¢ = AR? - w?, hence A% = Ap? - w'.
Thus, originally divergent motions will become stable vibrations when Ag? < w<.
In the case of marginal stability A = 0 will certainly be stabilized since ay- =
w?,

In the case of flutter instability, Eq. (28) states that A is complex [A; =
0, Ag # 0) if and only if A is complex (A7 # 0, Ag # 0}). Therefore, the fiutter
instability is not affected by the introduction of the rotation, which 1i1s an
‘nteresting observation.

Several demonstrative stability curves with X< (and A?) versus Q,n¢ are
shown 1in Figures 2 through 5. Only the lowest eigenvalue's branches are shown,
s nce they are the ones which dictate the stability behavior. Figure 2 shows
the twe lowest stable vibration modes and two rigid body modes on the A? = U
ax1s. This 1s the case of a free-flying missile with a follower thrust (K, = ()
and with a dimensionless r~otation of w? = 500. The two fluxural modes coalesce
at ‘oad Q.m¢ = 11.18 beyond which flutter instability begins. The rigid boay
modes without rotation indicate margina’ stab-lity. Due to the rotation w, the
ax s 1s shifted from A¢ = 0 to A? = 0, therefore, these previously rigid body
nodes are now stable modes of vibrations. The thrust that -s controlled with 3
small negative tangency (Ky = -0.05) 1s shown 1n Figure 3. It 1s noted 1n th:s

figure that the divergence 'nstability without rotation is stabirlized by w? =

500. However, the new critical load 1s ‘owered from Q/n¢ = 11.18 toc 5.30, not




because of w?, but due to the negative control parameter Ky. F-igure 4 shows <re
case of Ky = -1 or that the thrust has a fixed direction of the inertia ax‘s.

It is clear that the divergence instability of the lowest branch is stabil:zed
so that the critical load has been raised from zero to Qcr = 1.50 m¢. Fina'’y,
the case for a small positive tangency control parameter (Kgp = 0.05) s shown
Figure 5. In thys figure, the original divergence instability at Q. /n" = 3.00 <
stabilized by w?. However, the original critical load of flutter instapility =z~
Q-n® = 9.90 is not changed by the rotation. Hence, the critical locad in this

case °s raised from 3.00 to 9.90 due to the rotation of w< = 500.
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FIGURE 1. GEOMETRY OF THE PROBLEN
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